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1 Introduction

It is known that in many papers the Cauchy and boundary value problem is considered for the
ordinary differential equation (Nagy, 2021; Irvii, 2021). For the partial differential equation the
Cauchy and mixed problems have been considered for hyperbolic and parabolic type equations,
and boundary value problems are mainly considered for the elliptic type equations (Chow, 2003;
Richtmayer, 1982).

In the case of ordinary differential equations the number of boundary conditions is taken
equal to the order of the given equation (Mammadov & Khankishiyev, 2013), for the partial
differential equations the number of initial conditions is taken equal to the order of the derivative
with respect to the time variable included in the given equation, and the number of boundary
conditions in the arbitrary smooth boundary domain is taken to be equal to the half of the
highest order derivative with respect to the spatial variable (Garling, 2013).

For the Laplace equation one Dirichlet, Neumann, or Poincaré condition condition is given
(Irvii, 2021). For a biharmonic equation (the fourth order equation), two boundary conditions
are given (Rectoris, 1985). These conditions are called local conditions. In (Aliyev et al., 2012)
is shown the Fredholm property of the problem with non-local boundary conditions obtained by
dividing the boundary into two parts for the first-order elliptic type Cauchy-Riemann equation
and then combining the boundary values of the sought function.

This eliminates the misunderstanding in the boundary value problems for ordinary and
partial differential equations (Aliyev et al., 2012). Thus, if the boundary is divided into two
parts, then the number of non-local boundary conditions is equal to the order of the given
equation, if the boundary is divided into four parts, then the number of non-local boundary
conditions is twice the order of the equation (Aliyev et al., 2010). But then other difficulties
arise. Thus, if more than one point moves on the border at the same time, then the Carleman
condition must be satisfied. That is, the moving points on the boundary must either move away
from or approach a point on the boundary. Otherwise, the obtained problem is not correct
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(Aliyev et al., 2012).

In (Aliyev et al., 2012) is shown that if the boundary for the Cauchy-Riemann equation is
divided into two parts, and the Carleman condition is satisfied, then the boundary value problem
is reduced to the second type of Fredholm integral equation with the necessary conditions, and
if the Carleman condition is not satisfied, to the first type Fredholm integral equation.

In the presented work the fundamental solution is obtained for the linear equation of order
less that two with constant coefficients from the solution of the linear second order differential
equation with constant coefficients by using the factorization method.

Note that the solution of the considered boundary value problem is related to the contraction
the Green function. The construction of the Green function is a difficult problem itself. But the
construction of the fundamental solution, which is its main part, is not related to the boundary
condition, but only depends on the equation. So the equation can be considered in entire space.
In this regard, the book (Vladimirov, 1981) should be noted, where the construction of the
fundamental solutions is described in detail.

2 Problem formulation
Consider the problem

D?y(x) + aDy(x) + by(x) = f(x), (1)

where D = %, a, b are given numbers, f(z) is a given continues function.

It is easy to construct the general solution of the corresponding homogeneous equation

y" (@) + ay'(z) + by(z) =0 (2)

in the form

2
y(x) =) Cryr(z), 3)
k=1

where C}, are arbitrary constants.
To find these constants one can use the method of variation of constants and get
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2
= ;Cke@” + N f(&)de. (4)

Thus we get the following formula for the fundamental solution of equation (1)

e‘pQw — egplm

V() =
() a? —4b

o(z). (5)

Here () is Heviside’s unit function.
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Now we factorize the operator corresponding to equation (1) and present it as a product of
two equations with fractional order derivative. Then we will construct the fundamental solution
for the linear, ordinary differential equation of order % with constant coefficients.

D?>+aD+b=(D? +aD + D2 +7)(D? +0) =

= D2+ 0D2 +aD2? + acD + D + oD +’yD% + vo. (6)
For the factorization coefficients we have the system below
oc+a=0, o= —aq,
ac+f=a, f=a+a

Bo+y=0, y=aa+a’
yo = b, —aa® — ot =b.

The last gives

\/a:l:\/a24b
a== — 5

We choose one of the four values of aobtained from (7)

—a++Va?—4b
2
Then
—a++Va*—4b —a++va?—4b a+Va?—4b a+va?—4b
=\\————— o=—\|———— f=—"—, y=a ——————.
2 2 2 2
From here we derive
a=./p P2, B=—p1, Y=—p1V/p ’ 9)
= 2 0 == 2, = —¥1, = %1 2= T =
VP2
Thus
(D? +aD + b)Y (z) = (D} + /g3D — 01D — p11/32)(D? — /@)Y () = 6(z). (10
Set the denotation X
Z(x) = (D2 = /ipa)Y (). (11)
Then from (10) we get
D?Z(x) + /§2DZ(x) — p1D3 Z(z) — p1/P2Z(x) = b(x). (12)
Now we calculate Z(x)considering (12)
1
Z(z) = DY (2) = V@2Y (2) = ez | D3 (e770(x)) — D} (e *0(a))| -
a2 —

P2 o 1z _
—ﬂ[eg) 0(z) —e?170(z)] =

1

1
= — {1200 (p2e¥20(x) + eP2%(z) — 1P 0(x) — e‘p”&(x))} -
a? —4b
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1
P2 ©2 P2 Tt
—— X" [e"?27)(x) — e T0(x)] = eP2'0(t)dt—
LBl — o) = 2 [ et
1
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VaZ -1 ) (D (W)t = =g (7 "0(w) = en"0(@)
Thus ) )
©2 Tlz—t)2 ©1 o) o,

2t g4 ¢
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YE_ e g(a) - e 70(0)]

where x > 0 is assumed.
Now we show that Z(x) satisfies (12). To do this we can write

D32(z) + VEDZ(x) — 91D} Z(2) — o1/@2(x) =
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{ a? —4b 0 (—
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We change the integration turn here

(14)
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in the internal. Since 7 =z — n(x — t) we obtain 7 —t = (v — t)(1 — n). Then (15

T [TED ey

/0 () dT/O 1) ePrtdt =
B S L ) I etV [t PR
a /o ’ dt/l (—3)! (—1)! (x —t)dn =

Subsituting (17) into (14) we obtain
3 1
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We transform the integrals included in (18) as follows
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Putting (19) into the doubt integrals in (18) we get

1 3 3 1 3 3
73 x T — bl T2 xr2 z T —T)2
_@DZ - +or —|—g02/ e“ﬁQT!dT—f' —9013,_%/ 6”17(3,,)657] =
v V1 5 0 5" 3 bR 0 3¢

1 _ 1 2
:_\/@x 12 ()02\/ 3027'( _7;) 2d7'+ Piv P2 xetpl‘r(x_
(=3)! p2—¢1 (—35)! w2 — %1 Jo (—3)!

By the same way putting (19) into the single integrals in (18) gives
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Putting the obtained relations into (18) we finally get
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Here 2 > 0 is assumed. Relation (21) is valid also for z < 0.

Thus, using the fundamental solution of the second order linear ordinary differential equation
with constant coefficients we obtained fundamental solution for the % order linear ordinary
differential equation with constant coefficients.

Namely, the following theorem is proved.

Theorem 1. The fundamental solution of% order equation (12) obtained by factorization (10)
of the second order linear equation (1) with constant coefficients is in the form of (13).

The approach given above makes possible to obtain the fundamental solution for the linear
ordinary differential equations with constant coefficients of fractional order less than two using
different factorizations of equation (1).

307



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.6, N.3, 2021

References

Aliev, N.A., Mustafayeva, Y.Y., Murtuzayeva, S.M. (2012). The influence of the Carleman
condition on the Fredholm property of the boundary value problem for Cauchy-Riemann
equation. Proceedings of the Institute of Applied Mathematics, 1(2), 153-162.

Aliev N.A., Zeynalov R.M. (2010). Investigation of the solution of the Steklov problem for the
Cauchy-Riemann equation with a boundary condition containing a global term. Transactions
of ANAS, Series of Physical-Technical and Mathematical Sciences, 30(3), 75-80.

Aliyev, N., Fatehi, M.H., Jahanshahi, M. (2010). Analytic solution for the Cauchy-Riemann
equation with non-local boundary conditions in the first semi-quarter. Quarterly Journal of
Science Tarbiat Moallem University, 9(1), 29-40.

Chow T.L.(2000). Mathematical Methods for Physicists: A concise introduction. Cambrige
University Press, 555p.

Garling D.J.H.(2013). A course in mathematical analysis (Vol. 2). Cambrige University Press,
612p.

Huseynov, R.V., Aliyev, N.A., Murtuzayeva, S.M. (2011). Influence of Karleman condition by
investigating boundary value problems for Laplace equation. Transactions of ANAS, series of
physical-technical and mathematical sciences, XXXI(4), 73-84.

Irvii V.(2021). Partial Differential Equations. University of Toronto, 382p.

Mammadov, Yu.A., Khankishiyev, Z.F. (2013). Differential Equations. Baku, Publishing House
of ASPU, 190p.

Nagy G.(2021). Ordinary Differential Equations. Michigan State University, East Lansing, 431p.

Rectoris, K. (1985). Variational Methods in Mathematical Physics and Technology. Moscow,
Mir, 590p. (in Russian)

Richtmayer R. (1982). Principles of Modern Mathematical Physics. Moscow, Mir, 486p. (in
Russian).

Vladimirov, V.S. (1981). Equations of Mathematical Physics. Moscow, Nauka, 512p.

308



